Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

C300UA0-1

S23-C300UA0-1

FRIDAY, 19 MAY 2023 – MORNING

MATHEMATICS – Component 1 Non-Calculator Mathematics HIGHER TIER

2 hours 15 minutes

ADDITIONAL MATERIALS

An additional formulae sheet.

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

For Ex	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	3	
2.	2	
3.	5	
4.	4	
5.	5	
6.	5	
7.	6	
8.	3	
9.	2	
10.	5	
11.	5	
12.	4	
13.	5	
14.	5	
15.	5	
16.	5	
17.	9	
18.	6	
19.	6	
20.	3	
21.	5	
22.	4	
23.	4	
24.	9	
25.	5	
Total	120	

PMT

© WJEC CBAC Ltd.

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$ Volume of a sphere = $\frac{4}{3}\pi r^3$ Volume of a cone = $\frac{1}{3}\pi r^2h$

Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

C300UA01 03

The I	engths of the three sides of a triangle are in the ratio 3 : 5 : 7.	
(a)	What fraction of the perimeter is the longest side of this triangle?	[1]
(b)	The perimeter of this triangle is 60 cm.	
<u>.</u>	Find the length of each of the three sides of this triangle.	[2]
·····		
	cm, cm, cm,	
The b	pearing of Q from P is 140°.	
Find	the bearing of <i>P</i> from <i>Q</i> .	[2]
·····		
		•••••••

The <i>i</i>	<i>i</i> th term of a sequence is given by $2n + 9$.	101
(a)	work out the difference between consecutive terms.	
(b)	(i) Solve $2n + 9 < 99$.	[2]
	(ii) Write down the number of terms of this sequence that are less than 99	9. [1]
	Number of terms =	

	5	
4.	James has been on holiday to the USA and is flying home to the UK. The price of a gift in a shop at the airport is \$65. The price of the same gift online is €60 including delivery.	Examiner only
	On the day of his flight, the exchange rates were as follows.	
	£0.80 = \$1 £1 = €1.20	
	Is it cheaper to buy the gift at the airport or online?	
	Airport Online	
	Show how you decide. [4]	
		-
		C300UA0
]
	05 © WJEC CBAC Ltd. (C300UA0-1) Turn over.	

C300UA01 07

				Examiner
6.	(a)	Sam cycled south for 16 km. He then turned and cycled east . When he stopped for a rest, the shortest distance back to his starting point was 20 km	m.	oniy
		Calculate how many kilometres Sam cycled while travelling east.	[3]	
		North		
				Candulant
	(b)	Sam cycled the 20 km back to his starting point at a constant speed of 25 km/h.		
		How many minutes did this take?	[2]	

C300UA01 11

11

12

	Adults (£)	a	A second s
	Children (£)	c	
The Jones family The Patel family o	of 4 adults and 1 child pa f 5 adults and 2 children	y £9.50 to take the boat. pay £13 to take the boat.	
The Lee family ha	is 3 adults and 2 children.		
How much does the	he Lee family pay to take	the boat?	[5]
	algebraic method and she	ow all your working.	[5]
	The Lee family pa	ays	

C300UA01 13

										Fvon
12.	(a)	Circl	e the equ	ation of a l	ine parall	el to the line	y = 4x	+5.		[1]
		<i>y</i> = -	$-\frac{1}{4}x + 5$	<i>y</i> = 4	x-5	y = -4x	+ 5	$y = \frac{1}{4}x - 5$	4y = x + 5	
	(b)	The	gradient	of the line v	vhich pas	ses through	the poir	nts $(a, 3)$ and (2)	$(a, 9)$ is $\frac{3}{4}$.	
		Find	the value	e of a.						[3]
13.	(a)	(1)	Find the	e next term	of the fol	lowing Fibor	nacci-typ	be sequence.		[1]
			0	2	2	4	6			
	······									
		(ii)	Here ar	e the first 4	terms of	a sequence) <u>.</u>			
			$\sqrt{3}$	1	<u>1</u> √3	- - -	<u>1</u> 3			
		Find Simp	the 6th te olify your	erm of this answer.	sequence	9.				[2]
		•••••								
	(b)	Find	the <i>n</i> th te	erm of the f	followina	sequence.				[2]
				-3	0	5	12	21		
	13		0	© WJEC CBAC Ltd	I.	(C300UA0-1)			Turn o	ver.

C300UA01 15

5. A small tank is a The tank contain	a cuboid. It has a square base of side 20 cm. ns some liquid but is not full.	Examir only
	Image: Windows and the scale	
	Diagram not drawn to scale	
More of the sam The total The depth The dens Calculate the or You must show	ne type of liquid is added to the tank: mass of the liquid in the tank is now 5400 grams. h of the liquid has increased by 50%. Sity of the liquid is 0.9g/cm ³ . r iginal depth of the liquid. all your working.	[5]
·····		
		······································
		······································
· · · · · · · · · · · · · · · · · · ·		······································

16.	(a)	Write $13^{-2} \times 13^{7}$ as a single power of 13.	[1]	Examiner only
	(b)	Calculate the value of $(8^{-1})^{\frac{1}{3}}$.	[2]	
	(C)	$3^{\frac{5}{a}} = b\sqrt{3}$ where <i>a</i> and <i>b</i> are integers. Find the value of <i>a</i> and the value of <i>b</i> .	[2]	
	······			
1,100,100				
	17	© WJEC CBAC Ltd. (C300UA0-1) Tu	n over.	

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Examiner only Gracie has collected data about the heights of 30 giant sunflowers. The table shows her results. 17. (a) Height, h (m) $3 < h \leq 3.5$ $3.5 < h \leq 4$ $4 \le h \le 4.5$ $4.5 < h \leq 5$ Frequency 5 12 5 8 Gracie attempts to draw a cumulative frequency diagram. 35 30 25 20 Cumulative Frequency 15 10 5 03 1.5 2.5 3 3.5 0.5ż 4·5 0 4 5 1 Height, h (m) Make two different criticisms of Gracie's diagram. [2] 1. 2.

Examiner only

(b) Gracie also collects data about the amount of money each of a group of 40 gardeners spent on their gardens during the months of April and May. The table shows the data for April.

Amount for April, $(\pounds x)$	0 < <i>x</i> ≤ 30	30 < <i>x</i> ≤ 40	40 < <i>x</i> ≤ 50	50 < <i>x</i> ≤ 60	60 < <i>x</i> ≤ 80
Frequency	6	9	12	5	8

(b)	
B b° c° a° d° D d° D	>E
Diagram not drawn to scale	
ABE is an isosceles triangle. AB is parallel to DC so that ABCD is an isosceles trapezium.	
Prove that <i>ABCD</i> is always a cyclic quadrilateral.	[3]
State any reasons that you use in your proof	3

(-)	Find a formula for win terms of x				
(a)	Find a formula for y in terms of x.	[3]			
(b)	(i) Use your formula to find the value of y when $x = 8$.	[1]			
	(ii) Use your formula to find the positive value of x when $v = 1200$	[2]			

	Write 3.21 as a fraction.			
	Give your answer as a mixed number in its simplest form.			
١.	In this question all lengths are in centimetres.			
	$\sqrt{5} + 3$			
	Diagram not drawn to scale			
	_			
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$			
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$.			
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$. Calculate the exact area of this rectangle. [5	5]		
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$. Calculate the exact area of this rectangle. [5	j] 		
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$. Calculate the exact area of this rectangle. [5	j] 		
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$. Calculate the exact area of this rectangle. [5	•] 		
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$. Calculate the exact area of this rectangle. [5	•] ••• •••		
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$. Calculate the exact area of this rectangle. [5] 		
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$. Calculate the exact area of this rectangle. [5	•] ••• •••		
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$. Calculate the exact area of this rectangle. [5	•] ••• •••		
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$. Calculate the exact area of this rectangle. [5	···		
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$. Calculate the exact area of this rectangle. [5	·] ··· ···		
	The length of this rectangle is $\sqrt{5} + 3$. The perimeter of the rectangle is $8\sqrt{5} - 2$. Calculate the exact area of this rectangle. [5			

(a)	Solve the equation $5x^2 - 8x - 1 = 0$					
(a)	Obvious equation 3π 3π $1-5$.					
	Give your answers in the form $\frac{m \pm \sqrt{n}}{5}$, where <i>m</i> and <i>n</i> are integers.	[3]				
•••••						
•••••		••••••				
••••••						
		••••••				
		••••••				
		••••••				
(b)	Use factorisation to solve the following equation.	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{3} = 3 + \frac{2}{3}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				
(b)	Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]				

P(A) (a) By drawing a Ve	= 0 ⋅ 3, enn diagram,	$P(A \cup B) = 0$ or otherwise,	·7, find the v	$P(A \cap B) = 0$ ralue of $P(B)$).	[3]
α) By drawing a Ve	enn diagram,	or otherwise,	find the v	alue of $P(B)$).	[3]
						••••••
b) Find $P(A' \cup B')$).					[2]
						••••••
						••••••
		END OF PA	PER			

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

